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a b s t r a c t

Direct experimentation with chemical warfare agents (CWA) to study important problems such as their
permeation across protective barrier materials, decontamination of equipment and facilities, or the envi-
ronmental transport and fate of CWAs is not feasible because of the obvious toxicity of the CWAs and
associated restrictions on their laboratory use. The common practice is to use “simulants,” namely, anal-
ogous chemicals that closely resemble the CWAs but are less toxic, with the expectation that the results
attained for simulants can be correlated to how the CWAs would perform. Simulants have been tradi-
tionally chosen by experts, by means of intuition, using similarity in one or more physical properties
(such as vapor pressure or aqueous solubility) or in the molecular structural features (such as functional
groups) between the stimulant and the CWA. This work is designed to automate the simulant identifica-
imilarity search
animoto coefficient
uclidean distance

tion process backed by quantitative metrics, by means of chemical similarity search software routinely
used in pharmaceutical drug discovery. The question addressed here is: By the metrics of such software,
how similar are traditional simulants to CWAs? That is, what is the numerical “distance” between each
CWA and its customary simulants in the quantitative space of molecular descriptors? The answers show
promise for finding close but less toxic simulants for the ever-increasing numbers of CWAs objectively

and fast.

. Introduction

Civilized nations have foresworn not to make or deploy chem-
cal warfare agents but rogue states and terrorists have not, and
WA stockpiles presumably exist. Hence warfighters and civilians
eed to be prepared for CWA attacks [1,2]. At the US Army NSRDEC
nd similar organizations an ongoing focus is on developing pro-
ective masks, barrier clothing, and decontamination techniques
o avoid exposure to CWAs that are toxic even at low dosages [3].
lso of interest are CWA disposal and environmental issues [4]. In

his high-stakes context, it is desirable, even critical, to develop
quantitative understanding of the gamut of CWA phenomena

esides toxicology – termed here as “handling characteristics”: per-
eation (through barriers and human or livestock skin) as well
s reactivity, and sorption. Measuring the necessary data in lab-
ratories, however, is not practical because CWAs are so harmful
hat their handling is subject to severe restrictions. Direct theo-

Abbreviations: BCUT, Burden Chemical Abstracts Service and the University
f Texas; CAS, Chemical Abstracts Service; CWAs, Chemical warfare agents; ED,
uclidean distance; HTS, high throughput screening; MACCS, molecular access
ystem; NSRDEC, Natick Soldier Research Development and Engineering Center;
SAR, quantitative structure activity relations; QSPR, quantitative structure prop-
rty relations; TC, Tanimoto coefficient; WENDI, Web Engine for Nonobvious Drug
nformation.
∗ Corresponding author. Tel.: +1 508 233 6445; fax: +1 508 233 4469.
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retical prediction of the phenomena is also not a panacea, due to
the paucity of estimates for the parameters required by the theo-
ries [5]. While neither measurement nor theory is an easy option
for mapping the behavior of the toxic chemical agents directly,
data can be obtained for alternative, less toxic molecules that
can act as “simulants,” surrogates, or analogs of the agents. The
expectation is that, if a simulant resembles an agent in molecular
structure or physicochemical properties then the simulant’s per-
formance may offer guidance for handling the CWA. Of course, no
one simulant will be congruent in all aspects with the agent it is
supposed to mimic; if so, it will probably be equally toxic. Accord-
ingly, for a given CWA one can expect to find different simulants
depending on the handling-phenomenon of interest – each sim-
ulant comparable with the agent in different molecular features
or properties that correlate well with the phenomenon; e.g., sim-
ilarity in hydrophobicity or polarizability indicating similarity in
sorption.

Chemical similarity search is routine in medicinal drug discov-
ery by “virtual screening” to find synthesizable chemicals that may
mimic the pharmacologic activity of a synthetic or natural “lead
drug” or “known active” [6–12]. It is also current in toxicology to
assess chemicals of unknown toxicity, by searching for analogs with
known toxicity profiles [13]. It would be of much interest to apply

such powerful computational chemistry and data mining tech-
niques and find CWA simulants by searching through databases
of agent and simulant molecular structures and physicochemical
properties.

dx.doi.org/10.1016/j.jhazmat.2011.07.077
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:Ramanathan.Nagarajan@us.army.mil
dx.doi.org/10.1016/j.jhazmat.2011.07.077
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Table 1
Types of chemical warfare agents.

Type of agent Examples (and their military symbols) Persistence Mode of exposure

Asphyxiates Chlorine (CL), Phosgene (CG) Low Inhalation
Blister Agents Distilled mustard (HD) High Various
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ability correlating positively with hydrophobicity and negatively
with molecular size. In contrast, virtual screening has struggled
[6,15] in predicting effects (such as alignment-specific binding of
Blood Agents Hydrogen Cyanide (AC)
Nerve Agents, G Tabun (GA), Sarin (GB), Soman (GD)
Nerve Agents, V VX

The CWA similarity search is akin to a subset of drug design
one that addresses bio-availability (a measure of intestinal or

utaneous absorption of the drug), which is continuously corre-
ated with physical properties – than the hit-or-miss search for the

ore elusive bio-activity, which requires precise lock-and-key fits
etween receptors and ligands. Bioactivity is manifested when a
hemical has the right three dimensional structure, orientation, and
nergetics to interact effectively with specific receptors in a living
rganism. Bioavailability dictates whether the chemical will reach
he receptors or will fail to do so because of an inability to perme-
te or penetrate the various barrier membranes, storage in inert
issues, degradation by metabolic or other processes, or excretion
14]. Chemical warfare agents – which can be viewed as lethal drugs
must have not only bioactivity or lethality but also bioavailabil-

ty or deliverability. While agent toxicity is a result of bioactivity,
ts bioavailability is the predominant concern in the development
f protective barrier materials or in determining the environmen-
al transport and fate of CWAs. The fundamental physicochemical
rocesses that determine bioavailability – sorption, dissolution, or
artition at interfaces in series with diffusion, apply also to CWA
ermeation through barriers or skin. Arguably, the ideal simulant
ill be a chemical that has all the bioavailability of the agent but
one of the bioactivity.

Once the simulants have been identified, the handling behavior
f CWAs can be addressed by computational methods of a differ-
nt kind – based in experimental data on simulants and reference
aterials, and offering predictions via QSAR or QSPR statistical cor-

elations or pattern recognition algorithms, instead of theory. This
aper reports results from an exploration of the use of chemin-
ormatics – fast, objective, and computational chemical-similarity
earches – to find CWA simulants.

. Prior art on CWA simulants

Any household or industrial chemical, if improperly used, can
e harmful. Nevertheless, certain especially virulent and easily
eployable chemicals have attained dubious distinction as CWAs
Table 1).

Employing simulants as a means of understanding CWAs is
outine, as described in a recent review paper [4] which lists sev-
ral classic CWA simulants. Previous simulant selections, however,
ppear to have been manual, i.e., not systematic computerized
earches through chemical databases. Typically, the simulants
eem to have been chosen by experienced scientists intuitively
omparing a dozen or so molecules in terms of functional groups
nd a few physical properties. Of course, such commentary is not
eant to disparage the significant progress that has been made

sing the simple methods. Our aim instead is to bring out the oppor-
unity for greatly broadening the scope of CWA simulant searches
y tapping into the advances in drug discovery and data mining.

. Cheminformatics
There is an abundant and growing literature on “similarity
earches” which can quickly rank a plethora of chemicals by their
imilarity to a specified query chemical, especially in medicinal
Low Inhalation
Low Inhalation
High Skin contact

chemistry and pharmacology, for drug design by “high through-
put screening”. HTS techniques are quite sophisticated, conjugating
chemistry, computer science, mathematics, and statistics [6–13] to
mine “similarity spaces”.

Similarity searches start with a compilation of quantified struc-
tural features and physicochemical properties of query chemicals
and prospective simulants. These “molecular descriptors” are
preferably calculated as opposed to measured, in order to let the
search encompass molecules that are as yet nonexistent; i.e., have
been only proposed in silico but not yet synthesized in actu, or exist
only in amounts too minuscule for some measurements. From this
chemical database which, in drug design may include hundreds of
descriptors each for thousands of molecules, the method then has to
use statistical tools to weed out irrelevant or redundant descriptors
and molecules [13]. Alternatively, the descriptors may be filtered
through a weighting scheme [7]. Finally, the search method has to
rank the molecules on their similarity or dissimilarity to the query
molecule by comparing the descriptors – via graphical, statistical,
pattern recognition or machine-learning means. The ranking usu-
ally involves numerical metrics of the “distance” or “association”
between query and simulant.

The desired features of similarity search methodology and soft-
ware are:

(1) Access to a large database of molecular descriptors for chemi-
cals.

(2) Provision to augment the database with user calculations and
data.

(3) Computational chemistry tools for calculating quantum chem-
ical descriptors.

(4) Options to select molecules, descriptors and similarity metrics,
in order to detect correlations among descriptors and compare
the significance of the metrics.

(5) Capabilities for calculating the metrics of similarity between
any two chemicals.

After a careful search, we settled on the commercial1 Sarchitect®

software, which, in combination with public or proprietary
databases of chemicals, would meet most of these criteria.2

4. Scope

In addition to software and methodology, drug design also pro-
vides insights that can guide the work on CWA simulants. For
instance, it has been recognized [6] that virtual screening is more
successful for effects that are continuously variable with some
or other physicochemical property – a change in the latter gen-
erating a non-abrupt, proportionate (but not necessarily linear)
change in the former. Example: intestinal absorption or bioavail-
1 Sarchitect Designer version 2.5, Strand Life Sciences Pvt. Ltd., Bangalore, India,
2008.

2 The authors’ choice is not to be construed as an endorsement by the U.S. Army.
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igands to receptor sites) which are discontinuously or highly non-
inearly dependent on the causes. It is fortunate that, as noted in the
ntroduction, the CWA similarity search would not seek to mimic
he query chemical’s specific bio-activity (lethality) but instead aim
t its general bio-availability (handling).

. Molecular descriptors

It is understood that no molecule will be amenable to a sin-
le all-encompassing absolute definition, but any molecule can be
haracterized by a number of descriptors for each phenomenon
f interest. When all these finite sets for the enormous variety
f phenomena are put together, even after allowing for overlaps,
he compilation of molecular descriptors can begin to approach
n infinite set. Despite their large number, however, molecular
escriptors lend themselves to compact classifications [16]. For

nstance, in terms of the level of abstraction, descriptors fall in three
lasses:

Macroscopic properties such as molecular weight or the
octanol/water partition coefficient, refractive index, molar refrac-
tivity, parachor, density, solubility, partition coefficient, dipole
moment, chemical shift, chromatographic retention time, spec-
troscopic signal (or even complete spectra for each molecule),
rate constant, equilibrium constant, vapor pressure, boil-
ing/freezing point, and acid dissociation constant.
Derived properties such as the surface distribution of elec-
trostatic potential, the empirical absorbability index (a group-
contribution index of carbon adsorption from aqueous solutions),
or the various theoretical charge descriptors (calculated using
quantum chemistry methods).
More abstract measures such as BCUT, topological indices, sub-
structural fingerprints and feature counts [7–13].

Another pertinent classification is based on molecular dimen-
ionality:

One-dimensional or 1D descriptors depend only on the formula
(e.g., molecular weight).
2D descriptors depend on topology – the connectivity of bonds
between the atoms (e.g., the Balaban connectivity index)
3D descriptors depend on stereochemistry and geometry (e.g.,
dipole moment).
4D descriptors take into account the conformational variability
(e.g., the global flexibility index).

The cited literature on molecular descriptors is highly evolved
nd amply details descriptor types, invariance, and degeneracy, as
ell as the attributes of similarity metrics. Hence, these details
eed not be repeated here. It is instructive, however, to list a few
onsiderations that pertain to CWA chemical similarity searches:

. Descriptors need not be complex to be useful; e.g., simple heavy-
atom counts can be telling [6].

. As noted previously [6], descriptors are “good” if small tweaks
of the descriptors cause small changes in the targeted behavior,
and “poor” if the elicited responses are large or abrupt.

. Along with the numerical values for the descriptors, it is desir-
able to include error bars, indicating the experimental error for
measured properties and round-off error for calculated descrip-

tors.

. The ideal set of descriptors would be minimalist (offering suffi-
cient representation with the fewest descriptors), fundamental
instead of derivative (with little correlation among descriptors),
Materials 194 (2011) 85–91 87

and entirely theoretical or computational in order to include
virtual or untested molecules.

5. Computed descriptors – purely theoretical constructs such as
topographic indices or physical properties calculated using the-
oretical or empirical equations – should preferably be calculable
instantaneously during the similarity search. That way, the
entire database of chemicals can be probed in a single run. On the
other hand, measured properties or computationally intensive
descriptors calculated offline and stored – e.g., quantum chem-
ical measures – would limit the search to those chemicals with
such stored entries.

6. While a comprehensive database may be set up and continually
updated with theoretical indices as well as measured properties,
the similarity search per se need not use only that database or
a single similarity metric. Instead, several separate forays may
be made, into the large database or several smaller field-specific
databases [8], each search restricted to a certain cluster of chem-
icals or class of descriptors and appropriate similarity metrics.

6. Method

The first phase in this ongoing work had the scope of answering
a key question: By the metrics of computational chemical similarity
search, how similar are traditional CWA simulants [3,4] to CWAs?
That is, what is the “distance” between each CWA and its customary
simulants in the quantitative space of molecular descriptors?

Based on information on a few CWAs and their traditional sim-
ulants (listed in Ref. [4]), a small database was constructed by
entering the CAS Registry numbers of the CWAs as well as the
known simulants in the CAS Scifinder®, entering the resulting
structures in standard MOL notation into Sarchitect®, and cal-
culating energy-minimized conformers from the structures using
Sarchitect®.

Sarchitect® then calculates two types of descriptors for all
the molecules in the database: “Digital” (topological and other)
descriptors that can be stored as binary (0 or 1) strings, and “analog”
physical properties and other (including topological) descriptors
which are not confined to 0 or 1. Specifically, the binary strings
are the 166 2D MACCS “finger-print” keys [17]; i.e., each molecule
is characterized by a string of 166 zeroes or ones, each digit indi-
cating simply the absence or presence of a particular topological
or compositional feature, such as hetero-atoms in a four-member
ring, various atomic elements, etc. Similarly, each molecule is
characterized by about a thousand constitutional, topological, and
conformational integer- or real-valued descriptors. The latter are
pruned to remove any descriptor for which there is zero variance
across all molecules. The list of all the descriptors used can be found
in the supplementary data.

The next step is the determination of how similar (or dissim-
ilar) the target chemicals in the database (simulants) are to each
query chemical (CWA). The binary strings of digital descriptors are
amenable to sorting by the “Tanimoto coefficient (TC)” which is
a measure of association or similarity; i.e., TC = 1 if the target and
query are identical, and TC = 0, if the target has nothing in com-
mon with the query. The integer- and real-valued sets of analog
descriptors are assessed by the “Euclidean distance (ED)” which
is a measure of dissimilarity; i.e., ED = 0 if the target and query
are identical. It is pertinent to emphasize that, while Sarchitect®

uses the MACCS fingerprints as binary records of the presence or
absence of various features when computing Tanimoto coefficients,
Sarchitect® also provides the option of including the integer num-
ber of counts of the same features as MACCS descriptors when

computing Euclidean distances. The TC and ED calculations are out-
lined next. Ref. [7] provides a fuller description of the theory behind
the TC and ED indices.Tanimoto coefficient: Consider two molecules
A and B for each of which the string of 166 MACCS fingerprints can
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Table 2
Tanimoto coefficients (TC) between chemical warfare agents and simulants (TC = 1.0 for perfect similarity).

Rank Simulant Compound CAS Number TC

0 GB Sarin 107-44-8 1.000
1 DFP Di-isopropyl fluorophosphate 55-91-4 0.875
2 DIMP Di-isopropyl methyl phophonate 1445-75-6 0.750
3 DMMP Dimethyl methyl phosphonate 756-79-6 0.667
4 TMP Thimethyl phospate 512-56-1 0.640
5 DPCP Diphenyl chloro phosphate 2524-64-3 0.500
6 TEP Triethyl phosphate 78-40-0 0.455
7 DEEP Diethyl ethyl phosphonate 78-38-6 0.429
8 DEHP Diethyl ester phosphonic acid 762-04-9 0.382
9 Paraoxon Diethyl 4-nitrophenyl phosphate 311-45-5 0.300

10 ECA Ethyl chloro acetate 105-39-5 0.194
11 DEM Diethyl malonate 105-53-3 0.189
12 DOP Bis(2-ethylhexyl) phthalate 117-81-7 0.178
13 DPGME Dipropylene glycol monomethyl ether 34590-94-8 0.146
14 Ethanol Ethanol 64-17-5 0.103
15 BUSH 1-Butanethiol 109-79-5 0.030

0 GD Soman 96-64-0 1.000
1 DFP Di-isopropyl fluorophosphate 55-91-4 0.840
2 DIMP Di-isopropyl methyl phophonate 1445-75-6 0.720
3 DMMP Dimethyl methyl phosphonate 756-79-6 0.640
4 TMP Thimethyl phospate 512-56-1 0.615
5 DPCP Diphenyl chloro phosphate 2524-64-3 0.485
6 TEP Triethyl phosphate 78-40-0 0.441
7 DEEP Diethyl ethyl phosphonate 78-38-6 0.417
8 DEHP Diethyl ester phosphonic acid 762-04-9 0.371
9 Paraoxon Diethyl 4-nitrophenyl phosphate 311-45-5 0.294

10 ECA Ethyl chloro acetate 105-39-5 0.189
11 DEM Diethyl malonate 105-53-3 0.184
12 DOP Bis(2-ethylhexyl) phthalate 117-81-7 0.174
13 DPGME Dipropylene glycol monomethyl ether 34590-94-8 0.143
14 Ethanol Ethanol 64-17-5 0.100
15 BUSH 1-Butanethiol 109-79-5 0.029

0 GA Tabun 77-81-6 1.000
1 DEEP Diethyl ethyl phosphonate 78-38-6 0.537
2 TEP Triethyl phosphate 78-40-0 0.525
3 Paraoxon Diethyl 4-nitrophenyl phosphate 311-45-5 0.472
4 DEHP Diethyl ester phosphonic acid 762-04-9 0.463
5 DIMP Di-isopropyl methyl phophonate 1445-75-6 0.447
6 DMMP Dimethyl methyl phosphonate 756-79-6 0.432
7 TMP Thimethyl phospate 512-56-1 0.421
8 DFP Di-isopropyl fluorophosphate 55-91-4 0.381
9 ECA Ethyl chloro acetate 105-39-5 0.333

10 DEM Diethyl malonate 105-53-3 0.326
11 DOP Bis(2-ethylhexyl) phthalate 117-81-7 0.294
12 DPGME Dipropylene glycol monomethyl ether 34590-94-8 0.250
13 DPCP Diphenyl chloro phosphate 2524-64-3 0.245
14 Ethanol Ethanol 64-17-5 0.184
15 BUSH 1-Butanethiol 109-79-5 0.146

0 HD Distilled mustard 505-60-2 1.000
1 CEES 2-Chloroethyl ethyl sulfide 693-07-2 0.647
2 CEMS 2-Chloroethyl methyl sulfide 542-81-4 0.529
3 CEPS Chloroethyl phenyl sulfide 5535-49-9 0.421
4 DEA Diethyl adipate 141-28-6 0.310
5 DEP Diethyl pimelate 2050-20-6 0.310
6 DMA Dimethyl adipate 627-93-0 0.207
7 DEM Diethyl malonate 105-53-3 0.167
8 MS Methyl salicylate 119-36-8 0.000

0 L Lewisite 541-25-3 1.000
1 LO Lewisite oxide 3088-37-7 0.417
2 PAO Phenylarsine oxide 637-03-6 0.133

0 VX O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate 50782-69-9 1.000
1 Amiton O,O-diethyl-S-[2-(diethylamino)ethyl] phosphorothiolate 78-53-5 0.837
2 Malathion S-[1,2-bis(ethoxycarbonyl) ethyl] O,O-dimethyl phosphorodithiolate 121-75-5 0.630
3 BisEHEHP Bis(2-ethyl 1-hexyl) 2-ethyl 1-hexyl phosphonate 126-63-6 0.600
4 DEPPT O,S-diethyl phenyl phosphonothiolate 57557-80-9 0.595
5 BisEHP Bis(2-ethylhexyl) phosphonate 3658-48-8 0.565
6 Parathion O,O-diethyl-O-p nitrophenyl thiophosphate 56-38-2 0.509
7 DEP Diethyl pimelate 2050-20-6 0.391
8 DES Diethyl sebacate 110-40-7 0.391
9 DEM Diethyl malonate 105-53-3 0.326

10 DEPh Diethyl phthalate 84-66-2 0.271
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Table 3
Euclidean distances (ED) between chemical warfare agents and simulants (ED = 0 for perfect similarity).

Rank Simulant Compound CAS Number ED

0 GB Sarin 107-44-8 0.000
1 DMMP Dimethyl methyl phosphonate 756-79-6 0.193
2 DIMP Di-isopropyl methyl phosphonate 1445-75-6 0.226
3 DEHP Diethyl ester phosphonic acid 762-04-9 0.230
4 BUSH 1-Butanethiol 109-79-5 0.232
5 DEEP Diethyl ethyl phosphonate 78-38-6 0.242
6 TMP Trimethyl phospate 512-56-1 0.255
7 DFP Di-isopropyl fluorophosphate 55-91-4 0.260
8 ECA Ethyl chloro acetate 105-39-5 0.268
9 TEP Triethyl phosphate 78-40-0 0.308

10 DPGME Dipropylene glycol monomethyl ether 34590-94-8 0.320
11 Ethanol Ethanol 64-17-5 0.321
12 DEM Diethyl malonate 105-53-3 0.343
13 Paraoxon Diethyl 4-nitrophenyl phosphate 311-45-5 0.456
14 DPCP Diphenyl chloro phosphate 2524-64-3 0.541
15 DOP Bis(2-ethylhexyl) phthalate 117-81-7 0.659

0 GD Soman 96-64-0 0.000
1 DIMP Di-isopropyl methyl phosphonate 1445-75-6 0.228
2 DEEP Diethyl ethyl phosphonate 78-38-6 0.239
3 DFP Di-isopropyl fluorophosphate 55-91-4 0.261
4 DEHP Diethyl ester phosphonic acid 762-04-9 0.275
5 TEP Triethyl Phosphate 78-40-0 0.302
6 DMMP Dimethyl methyl phosphonate 756-79-6 0.303
7 BUSH 1-Butanethiol 109-79-5 0.320
8 TMP Trimethyl phospate 512-56-1 0.328
9 ECA Ethyl chloro acetate 105-39-5 0.353

10 DPGME Dipropylene glycol monomethyl ether 34590-94-8 0.364
11 DEM Diethyl malonate 105-53-3 0.380
12 Ethanol Ethanol 64-17-5 0.404
13 Paraoxon Diethyl 4-nitrophenyl phosphate 311-45-5 0.440
14 DPCP Diphenyl chloro phosphate 2524-64-3 0.541
15 DOP Bis(2-ethylhexyl) phthalate 117-81-7 0.610

0 GA Tabun 77-81-6 0.000
1 DEHP Diethyl ester phosphonic acid 762-04-9 0.238
2 DEEP Diethyl ethyl phosphonate 78-38-6 0.245
3 DMMP Dimethyl methyl phosphonate 756-79-6 0.265
4 DIMP Di-isopropyl methyl phosphonate 1445-75-6 0.269
5 TMP Trimethyl phospate 512-56-1 0.275
6 TEP Triethyl phosphate 78-40-0 0.286
7 DFP Di-isopropyl fluorophosphate 55-91-4 0.295
8 BUSH 1-Butanethiol 109-79-5 0.311
9 ECA Ethyl chloro acetate 105-39-5 0.316

10 DPGME Dipropylene glycol monomethyl ether 34590-94-8 0.341
11 DEM Diethyl malonate 105-53-3 0.363
12 Ethanol Ethanol 64-17-5 0.382
13 Paraoxon Diethyl 4-nitrophenyl phosphate 311-45-5 0.426
14 DPCP Diphenyl chloro phosphate 2524-64-3 0.511
15 DOP Bis(2-ethylhexyl) phthalate 117-81-7 0.617

0 HD Distilled mustard 505-60-2 0.000
1 CEES 2-Chloroethyl ethyl sulfide 693-07-2 0.180
2 CEMS 2-Chloroethyl methyl sulfide 542-81-4 0.256
3 CEPS Chloroethyl phenyl sulfide 5535-49-9 0.457
4 DEM Diethyl malonate 105-53-3 0.480
5 DMA Dimethyl adipate 627-93-0 0.486
6 DEA Diethyl adipate 141-28-6 0.560
7 MS Methyl salicylate 119-36-8 0.587
8 DEP Diethyl pimelate 2050-20-6 0.637

0 L Lewisite 541-25-3 0.000
1 LO Lewisite oxide 3088-37-7 0.459
2 PAO Phenylarsine oxide 637-03-6 0.770
0 VX O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate 50782-69-9 0.000
1 Amiton O,O-diethyl-S-[2- (diethylamino)ethyl] phosphorothiolate 78-53-5 0.195
2 DEP Diethyl pimelate 2050-20-6 0.291
3 BisEHP Bis(2-ethylhexyl) phosphonate 3658-48-8 0.305
4 Malathion S-[1,2-bis(ethoxycarbonyl) ethyl] O,O-dimethyl phosphorodithiolate 121-75-5 0.342
5 DEM Diethyl malonate 105-53-3 0.349
6 DEPPT O,S-diethyl phenyl phosphonothiolate 57557-80-9 0.367
7 DES Diethyl sebacate 110-40-7 0.376
8 Parathion O,O-diethyl-O-p nitrophenyl thiophosphate 56-38-2 0.395
9 DEPh Diethyl phthalate 84-66-2 0.421

10 BisEHEHP Bis(2-ethyl 1-hexyl) 2-ethyl 1-hexyl phosphonate 126-63-6 0.466
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Table 4
Top CWA simulants found in this study in decreasing order of similarity.

CWA Simulants based on

Tanimoto coefficient ≥ 0.6 Euclidean distance ≤ 0.25

GB DFP, DIMP, DMMP, TMP DMMP, DIMP, DEHP, BUSH, DEEP
GD DFP, DIMP, DMMP, TMP DIMP, DEEP
GA None DEHP, DEEP
HD CEES CEES
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VX Amiton, Malathion, BisEHEHP Amiton
Lewisite None LO

e written as binary records. Between two binary strings A and B
each comprising 166 bits) the Tanimoto coefficient (TC) is calcu-
ated using the definition: TC = NC/(NA + NB − NC), where NA and NB
re the number of ones in strings A and B, respectively, and NC is
he number of bits which are ones in both A and B. Two examples
employing strings much shorter than the canonical 166 bits) are
nstructive:

xample 1. String A: 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
SenString B: 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1

It can be discerned that NA = 3, NB = 4, and NC = 2; TC = 0.4.

xample 2. String A: 1 1 1 1 1 1 1 1 1 1 1 1
String B: 1 1 1 1 1 1 1 1 1 1 1 1

Here, the two strings are identical: NA = NB = NC = 12; TC = 1.
Euclidean distance: For each pair of molecules, the Euclid

istance is calculated based on up to 947 non-zero variance con-
titutional, topological, and conformation descriptors (computed
ithin Sarchitect®). Each column of descriptors is “center-and-

cale” normalized to have zero mean and unit variance. The
uclidean distance between two chemicals in rows p and q based
n n columns of normalized descriptors dnorm is calculated as:

Dpq =
√

(1/n)
∑i=n

i=1(dnorm,ip − dnorm,iq)2.

. Results and discussion

The Tanimoto coefficients and Euclidean distances were calcu-
ated for a number of chemicals commonly used as simulants for
he chemical warfare agents GD, GA, GB, HD, VX and Lewisite. The
esults are listed in Tables 2 and 3, respectively. The yields for the
earest simulants based on this molecular similarity search from
he two distance metrics are compared in Table 4.

These results meet the scope of this paper, namely, locating
ach CWA and its customary simulants in the quantitative space
f molecular descriptors. It is gratifying to note that many of the
imulants previously identified by experts based on intuitive com-
arisons of a few structural features and physical properties are
lso short-listed as close simulants by the present similarity search
ased on numerous calculated molecular descriptors, although it
ust be admitted that the list will be shorter, if the similarity cri-

eria were stricter; e.g., TC > 0.9 instead of 0.6, or ED < 0.1 instead of
.25. Searches using larger databases may point to other chemicals
s closer simulants, but the simulants addressed here will retain
he present Tanimoto coefficients with respect to the CWAs; the
uclidean distances may change (via the descriptor-normalization
tep) if the mean and the variance of descriptors change with
atabase size and makeup. The rankings may also change, if the
imilarity metrics are calculated using alternative sets of finger-
rints and descriptors [18,19], but it may turn out, as noted in Ref.

8], that “for any particular query chemical the set of neighbors
selected using physicochemical and topological spaces) is essen-
ially the same with some minor variation, though the order of
eighbor selection differs.”
s Materials 194 (2011) 85–91

Upon closer scrutiny of Table 4, it becomes apparent that –
in the similarity space of CWAs and customary simulants – the
Euclidean distance is somewhat more inclusive than the Tanimoto
coefficient. A possible cause may have to do with the way in which
Sarchitect® calculates the two similarity metrics: Tanimoto coef-
ficients are solely based on the binary MACCS fingerprint keys,
which record the presence or absence of various features as ones or
zeroes. As a result, when a query molecule (CWA) has one phospho-
rous atom, the Sarchitect® TC based on binary MACCS fingerprints
would not discriminate between a target simulant that has one
phosphorous atom and another that has multiple phosphorous
atoms. In contrast, the Euclidean distance may be a more robust
measure of (dis)similarity, since it is calculated using a variety
of descriptors, optionally including the integer MACCS descriptors
which record the number of counts of the same features the mere
presence or absence of which is coded by the MACCS fingerprints.
The two measures, Euclidean distance (ED) and Tanimoto Coef-
ficient (TC), are fundamentally different. TC depends only on the
presence or absence (1 or 0; yes or no) of molecular features, while
ED depends on the extent (big or small, long or short) of the fea-
tures. Further, in the present work, each is based on a different
set of features of the molecules being compared. Accordingly, the
two are not expected to be “monotonic” with each other; i.e. yield
identical similarity rankings. By the same token, the two are not
expected to yield completely contradictory rankings either, since
the underlying feature sets may be correlated at a deeper level.
The Tanimoto coefficients are bound by 0 and 1, by definition;
Euclidean distances need not be bound by 0 and 1, but in this
work the distances have been normalized to remain within those
bounds.

Broader investigations may reveal where CWAs reside in the
larger chemical similarity space, not restricted to customary simu-
lants as in the present work. At this stage, this study can be taken
as a ratification of the computational similarity search method as
an efficient technique to find simulants for CWAs, which is a wel-
come advance considering that the number of potential CWAs for
which simulants are unknown may far exceed [2] the small set with
known simulants [4]. There is a danger, however, that HTS methods
may be used for finding more CWAs. That is, by emphasizing only
chemical similarity, searches may trawl in more and more toxic
chemicals as candidates for new CWAs.

It is appropriate to close with a brief outline of future research
avenues. Aside from perfecting the current search procedure – by
augmenting the database of CWAs and potential simulants, and
altering the choice of descriptors, similarity metrics, and software –
alternative search techniques such as Random Forests and Artificial
Neural Networks [20] may be explored:

• With random forests, the entire data base comprising both CWAs
and potential simulants would get sorted into classes based
on multiple randomized classification passes through numerous
descriptors. Irrelevant or redundant descriptors would be elimi-
nated as a concomitant of the sorting. Simulants can be identified
from the “proximity matrix.”

• Similarly, a neural network can be trained by giving it the query
CWA as well as a list of traditional simulants; then the trained
network can be employed to find new simulants from chemical
databases.

Also, practical considerations can be accommodated by boosting
the list of descriptors to include, besides purely physicochemical

characteristics, practical measures such as cost, and “endpoints”
such as toxicity (recognizing that quantifying toxicity is a research
topic by itself [21–23]), ranking the database of potential simulants
in terms of toxicity and cost, and restricting the search for simulants
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